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Abstract 13 

We developed a two-stage model named random forest-generalized additive model (RF-GAM) 14 

based on satellite data, meteorological factors, and other geographical covariates to predict the 15 

surface 8-h O3 concentration across the remote Tibetan Plateau. The 10-fold cross-validation result 16 

suggested that RF-GAM showed the excellent performance with the highest R2 value (0.76) and 17 

lowest root mean square error (RMSE) (14.41 μg/m3) compared with other seven machine learning 18 

models. The predictive performance of RF-GAM model showed significantly seasonal discrepency 19 

with the highest R2 value observed in summer (0.74), followed by winter (0.69) and autumn (0.67), 20 

and the lowest one in spring (0.64). Additionally, the unlearning ground-observed O3 data collected 21 

from open websites were applied to test the transferring ability of the novel model, and confirmed 22 
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that the model was robust to predict the surface 8-h O3 concentration during other periods (R2 = 0.67, 23 

RMSE = 25.68 μg/m3). RF-GAM was then used to predict the daily 8-h O3 level over Tibetan 24 

Plateau during 2005-2018 for the first time. It was found that the estimated O3 concentration 25 

displayed a slow increase from 64.74 ± 8.30 μg/m3 to 66.45 ± 8.67 μg/m3 from 2005 to 2015, 26 

whereas it decreased from the peak to 65.87 ± 8.52 μg/m3 during 2015-2018. Besides, the estimated 27 

8-h O3 concentrations exhibited notably spatial variation with the highest values in some cities of 28 

North Tibetan Plateau such as Huangnan (73.48 ± 4.53 μg/m3) and Hainan (72.24 ± 5.34 μg/m3), 29 

followed by the cities in the central region including Lhasa (65.99 ± 7.24 μg/m3) and Shigatse (65.15 30 

± 6.14 μg/m3), and the lowest one in a city of Southeast Tibetan Plateau named Aba (55.17 ± 12.77 31 

μg/m3). Based on the 8-h O3 critical value (100 μg/m3) scheduled by World Health Organization 32 

(WHO), we further estimated the annually mean nonattainment days over Tibetan Plateau. It should 33 

be noted that most of the cities in Tibetan Plateau shared with the excellent air quality, while several 34 

cities (e.g., Huangnan, Haidong, and Guoluo) still suffered from more than 40 nonattainment days 35 

each year, which should be paid more attention to alleviate local O3 pollution. The result shown 36 

herein confirms the novel hybrid model improves the prediction accuracy and can be applied to 37 

assess the potential health risk, particularly in the remote regions with sparse monitoring sites. 38 

Keywords: Surface O3 level; satellite data; random forest; generalized additive model; Tibetan 39 

Plateau 40 

1. Introduction 41 

Along with the rapid economic development and urbanization, the anthropogenic emissions of 42 

nitrogen oxides (NOx) and volatile organic compounds (VOCs) displayed high-speed growth. The 43 

chemical reaction between NOx and VOCs in the presence of sunlight was beneficial to the ambient 44 
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ozone (O3) formation (Wang et al., 2019; Wang et al., 2017). As a strong oxidant, ambient O3 could 45 

play a negative role on human health through aggravating the cardiovascular and respiratory 46 

function (Ghude et al., 2016; Marco, 2017; Yin et al., 2017a). Apart from the effect on human health, 47 

O3 also posed a great threaten on vegetation growth (Emberson, 2017; Feng et al., 2015; Qian et al., 48 

2018; Feng et al., 2019). Moreover, the tropospheric O3 can perturb the radiative energy budget of 49 

the earth-atmosphere system as the third most important greenhouse gas next to carbon dioxide 50 

(CO2) and methane (CH4), thereby changing the global climate (Bornman et al., 2019; Fu et al., 51 

2019; Wang et al., 2019). Recently, the particulate matter less than 2.5 μm (PM2.5) concentration 52 

showed the persistent decrease, while the O3 issue has been increasingly prominent in China (Li et 53 

al., 2017b; Li et al., 2019b). Therefore, it was critical to accurately reveal the spatiotemporal 54 

variation of O3 pollution and assess its heath risk in China. 55 

A growing body of studies began to investigate the spatiotemporal variation of O3 level 56 

worldwide. Wang et al. (2014b) demonstrated that the 8-h O3 concentration in nearly all of the 57 

provincial cities experienced the remarkable increase during 2013-2014. Following the work, Li et 58 

al. (2017) reported that the annually mean O3 concentration over China increased by 9.18% during 59 

2014-2016. In other Asian countries except China, Vellingiri et al. (2015) performed long-term 60 

obervation and found that the O3 concentration in Seoul, South Korea displayed gradual increase in 61 

the past decades. In the Southeast United States, Li et al. (2018) observed that the surfacce O3 62 

concentration also displayed the gradual decrease in the recent ten years. Although the number of 63 

ground-level monitoring sites have been increasing globally, the limited monitoring sites still cannot 64 

accurately reflect the fine-scale O3 pollution status because each site shows small spatial 65 

representativeness (0.25-16.25 km2) (Shi et al., 2018). Furthermore, the number of monitoring 66 
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sites in many countries (e.g., China and the United States) displays uneven distribution 67 

characteristic at the spatial scale. In China, most of these sites focus on North China Plain (NCP) 68 

and Yangtze River Delta (YRD), while West China extremely lacks of the ground-level O3 data, 69 

which often increases the uncertainty of health assessment. Therefore, many studies used 70 

various models to estimate the O3 concentration without monitoring sites. Chemical transport 71 

models (CTMs) were often considered as the typical methods to predict the surface O3 level. 72 

Zhang et al. (2011) employed the Geos-Chem model to simulate the surface O3 concentration 73 

over the United States, suggesting that the model could capture the spatiotemporal variation of 74 

surface O3 concentration at a large spatial scale. Later on, Wang et al. (2016) developed a hybrid 75 

model named land use regression (LUR) coupled with CTMs to predict the surface O3 76 

concentration in the Los Angeles Basin, California. In recent years, these methods were also 77 

applied to estimate the surface O3 level over China. Liu et al. (2018) used Community 78 

Multiscale Air Quality (CMAQ) model to simulate the nationwide O3 concentration over China 79 

in 2015. Nonetheless, the high-resolution O3 prediction using CTMs might be widely deviated 80 

from the measured value owing to the imperfect knowledge about the chemical mechanism and 81 

the higher uncertainty of emission inventory. Moreover, the continuous emission data of NOx 82 

and VOCs were not always open access, which restricted the long-term estimation of surface 83 

O3 concentration using CTMs.  84 

Fortunately, the daily satellite data enables the fine-scale estimation of O3 level at a regional 85 

scale due to broad spatial coverage and high temporal resolution (McPeters et al., 2015). Shen 86 

et al. (2019) confirmed that satellite retrieved O3 column amount can accurately reflect the 87 

spatiotemporal distribution of surface O3 level. Therefore, some studies tried to use traditional 88 
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statistical models coupled with high-resolution satellite data to estimate the ambient O3 level. 89 

Fioletov et al. (2002) used the satellite measurement to investigate the global distribution of O3 90 

concentration based on simple linear model. Recently, Kim et al. (2018) employed the 91 

integrated empirical geographic regression method to predict the long-term (1979-2015) 92 

variation of ambient O3 concentration over United States based on O3 column amount data. 93 

Although the statistical modelling of ambient O3 concentration is widespread all around the 94 

world, most of these traditional statistical modelling only utilized the linear model to predict 95 

the ambient O3 concentration, which generally decreased the prediction performance because 96 

the nonlinearity and high-order interactions between O3 and predictors cannot be managed by 97 

a simple linear model. 98 

As an extension of traditional statistical model, machine learning methods have been widely 99 

applied to estimate the pollutant level in recent years because of their excellent predictive 100 

performances. Among these machine learning algorithms, decision tree models such as random 101 

forest (RF) and extreme gradient boosting (XGBoost) strike a perfect balance between 102 

prediction performance and computing cost. Furthermore, decision tree models can obtain the 103 

contribution of each predictor to air pollutant, which was beneficial to the parameter adaption 104 

and model optimization. Chen et al. (2018b) firstly employed RF model to simulate the PM2.5 105 

level in China since 2005. Following this work, we recently used the XGBoost model to 106 

estimate the 8-h O3 concentration in Hainan Island for the first time and captured the moderate 107 

predictive performance (R2 = 0.59) (Li et al., 2020). While decision tree model shows many 108 

advantages in predicting pollutant level, the spatiotemporal autocorrelation of pollutant 109 

concentration is not concerned by these studies. Li et al. (2019a) confirmed that the prediction 110 
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error by decision tree model varied greatly with space and time. Thus, it is imperative to 111 

incorporate the spatiotemporal variables into the original model to further improve the 112 

performance. To resolve the defects of decision tree models, Zhan et al. (2018) developed a 113 

hybrid model named RF-spatiotemporal Kriging (STK) to predict the O3 concentration over 114 

China and achieved the better performance (Overall R2 = 0.69, Southwest China R2 = 0.66). 115 

Unfortunately, RF-STK model still showed some weaknesses in predicting O3 concentration. 116 

First of all, the predictive performance of the STK model was strongly dependent on the number 117 

of monitoring sites and their spatial density. The model often showed worse predictive 118 

performance in the region with sparse monitoring sites (Gao et al., 2016). Moreover, the 119 

ensemble model cannot simulate the O3 level during the periods without ground-measured data. 120 

In contrast, generalized additive model (GAM) not only considers the time autocorrelation of 121 

O3 concentration, but also shows the better extrapolation ability (Chen et al., 2018a; Ma et al., 122 

2015). Thus, the ensemble model of RF and GAM is proposed to predict the spatiotemporal 123 

variation of surface 8-h O3 concentration. 124 

Tibetan Plateau, the highest plateau around the world, shows the higher surface solar 125 

radiation compared with the region outside the plateau. It was well documented that high solar 126 

radiation is beneficial to generate large amount of OH radical, resulting in the O3 formation via 127 

the reaction of VOC and OH radical (Ou et al., 2015). While the total O3 column amount in 128 

Tibetan Plateau displayed the slight decrease since 1990s, the convergent airflow formed by 129 

subtropical anticyclones could bring ozone-rich air surrounding the plateau to the low 130 

atmosphere (Lin et al., 2008), thereby leading to the higher surface O3 concentration over the 131 

plateau. Most studies focused on the stratosphere-troposphere transport of O3 in Tibetan Plateau, 132 
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whereas limited effort was spared to investigate ground-level O3 level over this region. To date, 133 

only several studies concerned about the spatiotemporal variation of surface O3 concentration 134 

in this region (Chen et al., 2019; Shen et al., 2014; Yin et al., 2017b). Furthermore, some of 135 

these field-observation studies only used the limited monitoring sites to reveal the 136 

spatiotemporal variation of O3 concentration, while they cannot clarify the real O3 status in 137 

many regions without monitoring sites (e.g., Northern part of Tibetan Plateau). Apart from these 138 

field measurements, Liu et al. (2018) (R = 0.60) and Zhan et al. (2018) (R2 = 0.66) used CTM 139 

and machine learning model to simulate the surface O3 concentration over China in 2015, 140 

respectively. Both of these studies included the predicted O3 level in Tibetan Plateau. Although 141 

they have finished the pioneering work, the predictive performances of both studies were not 142 

very excellent. Therefore, it was imperative to develop a higher quality model to enhance the 143 

modelling accuracy. 144 

Here, we developed a new hybrid method (RF-GAM) model integrating satellite data, 145 

meteorological factors, and geographical variables to simulate the gridded 8-h O3 concentration 146 

over Tibetan Plateau for the first time. Based on the estimated surface O3 concentration, we 147 

clarified the long-term variation (2005-2018) of surface O3 concentration and quantified the 148 

key factors for the annual trend. Filling the gap of statistical estimation 8-h O3 level in a remote 149 

region, this study provides useful datasets for epidemiological studies and air quality 150 

management. 151 

2. Materials and methods 152 

2.1 Study area 153 

   Tibetan Plateau is located in Southwest China ranging from 26.00 to 39.58°N and from 154 
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73.33 to 104.78°E. Tibetan Plateau is surrounded by Taklamakan Desert to north, Sichuan Basin 155 

to southeast. The land area of Tibetan Plateau reaches 2.50 million km2 (Chan et al., 2006). 156 

Based on the air circulation pattern, Tibetan Plateau can be roughly classified into the monsoon-157 

influenced region and the westerly-wind influenced region (Wang et al., 2014a). The annually 158 

mean air temperature in most regions are below 0°C. The annually mean rainfall amount in 159 

Tibetan Plateau ranges from 50 to 2000 mm. The terrain conditions are complex and the higher 160 

altitude focused on the central region. Tibetan Plateau is generally treated as the remote region 161 

lack of anthropogenic activity and most of the residents focus on southeast and south part of 162 

Tibetan Plateau. Tibetan Plateau is consisted of 19 prefecture-level cities and their names and 163 

corresponding geographical locations are shown in Fig. 1 and Fig. S1. 164 

2.2 Data preparation 165 

2.2.1 Ground-level 8-h O3 concentration 166 

The daily 8-h O3 data in 37 monitoring sites over Tibetan Plateau from May 13th , 2014 to 167 

December 31th, 2018 were collected from the national air quality monitoring network. The O3 levels 168 

in all of these sites were determined using an ultraviolet-spectrophotometry method. The highest 8-169 

h moving average O3 concentration each day was calculated as the daily 8-h O3 level after data 170 

quality assurance. The data quality of all the monitoring sites were assured on the basis of the HJ 171 

630-2011 specifications. The data with no more than two consecutive hourly measurement missing 172 

in each day was treated as the valid data. 173 

2.2.2 Satellite-retrieved O3 column amount 174 

The O3 column amount (DU) during 2005-2018 were downloaded from the Ozone Monitoring 175 

Instrument-O3 (OMI-O3) level-3 data with a 0.25° spatial resolution from the website of National 176 

https://doi.org/10.5194/acp-2019-972
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

Aeronautics and Space Administration (NASA) (https://www.nasa.gov/). The OMI-O3 product 177 

shows global coverage and traverses the earth once a day. The O3 column amount with cloud 178 

radiance fraction > 0.5, terrain reflectivity > 30%, and solar zenith angles > 85° should be removed. 179 

In addition, the cross-track pixels significantly influenced by row anomaly should be deleted.  180 

2.2.3 Meteorological data and geographical covariates 181 

The daily meteorological data were obtained from ERA-Interim datasets with 0.125° resolution. 182 

These meteorological data were consisted of 2 meter dewpoint temperature (d2m), 2 meter 183 

temperature (t2m), 10 meter U wind component (u10), 10 meter V wind component (v10), boundary 184 

layer height (blh), sunshine duration (sund), surface pressure (sp), and total precipitation (tp). The 185 

30 m-resolution elevation data (DEM) was downloaded from China Resource and Environmental 186 

Science Data Center (CRESDC). The data of gross domestic production (GDP) and population 187 

density with 1 km resolution were also extracted from CRESDC. Population density and GDP in 188 

2005, 2010, and 2015 were integrated into the model to predict the surface 8-h O3 concentration 189 

over Tibetan Plateau because these data were available each five years. Additionally, the land use 190 

data of 30 m resolution (e.g., waters, grassland, urban, forest) were also extracted from CRESDC. 191 

At last, the latitude, longitude, and time were also incorporated into the model. 192 

All of the explanatory variables collected were resampled to 0.25° × 0.25° grids to predict the 193 

O3 level. The original meteorological data with 0.125° resolution were resampled to 0.25° grid. The 194 

land use area, elevation, GDP and population density in each grid were calculated using spatial 195 

clipping. Lastly, all of the predictors were integrated into an intact table to train the model. 196 

2.3 Model development and assessment 197 

The RF-GAM model was regarded as the hybrid model of RF and GAM. The RF-GAM model 198 
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is a two-stage model that the prediction error estimated by the RF model was then simulated by 199 

GAM. The prediction results of RF and GAM were summed as the final result of RF-GAM model 200 

(Fig. 2). The detailed equation is as follows: 201 

( , ) ( , ) ( , )Z s t P s t E s t     (1) 202 

where Z(s,t) is the estimated 8-h O3 level at the location s and time t; P(s,t) represents the 8-h O3 203 

concentration predicted by the RF model; E(s,t) denotes the prediction error by GAM. 204 

In the RF model, a large number of decision trees were planted based on the bootstrap sampling 205 

method. At each node of the decision tree, a random sample of all predictors was applied to 206 

determine the best split among them. Following the procedure, a simple majority vote was employed 207 

to predict the 8-h O3 level. The RF model avoided priori linear assumption of O3 concentration and 208 

predictors, which was often not in good agreement with actual state. The RF model has two key 209 

parameters including ntree (the number of trees grown) and mtry (the number of explanatory variables 210 

sampled for splitting at each node). The prediction performance of the RF model was strongly 211 

dependent on the two parameters. The optimal ntree and mtry were determined based on the least out-212 

of-bag (OOB) errors. Besides, the backward variable selection method was performed on the RF 213 

submodel to achieve the better performance. At each step of the predictor selection, the variable 214 

with the least important value was excluded from the next step. This one-variable-at-a-time 215 

exclusion method was repeated until only two explanatory variables remained in the submodel. 216 

Finally, all of the selected variables except the area of waters were integrated into the model to 217 

achieve the best prediction performance. The detailed RF model is as follows: 218 

3 3  

Pr

O O column Elevation Agr Urban Forest GDP Grassland Population

ec T WS P tsun RH

        

    

    (2)219 
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where O3 denotes the observed 8-h O3 level in the monitoring site; the O3 column represents the O3 220 

column amount in the corresponding grid; Elevation denotes the corresponding elevation of the site; 221 

Agr, Urban, Forest, Grassland are the agricultural land, urban land, forest land, and the grassland, 222 

respectively. Population represents the population density in the corresponding site. Prec, T, WS, P, 223 

tsun, and RH are precipitation, air temperature, wind speed, air pressure, sunshine duration, and 224 

relative humidity, respectively. Additionally, other five models including RF, generalized regression 225 

neutral network (GRNN), backward propagation neural network (BPNN), Elman neural network 226 

(ElmanNN), and extreme learning machine (ELM) also used the backward variable selection 227 

method. The R2 value was treated as an important parameter to add or reduce the variable. The 228 

variable should be removed when the R2 value of the submodel showed the remarkable decrease 229 

with the integration of this variable. Lastly, the optimal variable group was applied to establish the 230 

submodel.  231 

   Following the RF submodel, the prediction error estimated by the RF submodel was further 232 

modelled by the GAM. GAM could reflect the time autocorrelation of predictive error of RF model, 233 

and thus the ensemble model of RF and GAM might decrease the modelling error of one-stage 234 

model. All of the variables were incorporated into the models to establish the second-stage model, 235 

and the backward variable selection was also used to determine the optimal variable group. 236 

The 10-fold cross-validation (CV) technique was employed to evaluate the predictive 237 

performances for all of the machine learning models. All of the training data set were randomly 238 

classified into 10 subsets uniformly. In each round of validation, nine subsets were used to train and 239 

the remaining subset was applied to test the model performance. The process was repeated 10 times 240 

until every subset has been tested. Some statistical indicators including R2, Root Mean Square Error 241 
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(RMSE), Mean Prediction Error (MPE) and the slope were calculated to assess the model 242 

performance. The optimal model with the best performance was used to estimate the 8-h O3 243 

concentration in the past decades. 244 

3. Results and discussion 245 

3.1 The validation of model performance 246 

Figure 3 shows the density scatterplots of the fitting and 10-fold cross-validation results for eight 247 

machine learning models for China. The 10-fold cross-validation R2 values followed the order of 248 

RF-GAM (R2 = 0.76) > RF-STK (R2 = 0.63) > RF (R2 = 0.55) > GRNN (R2 = 0.53) > BPNN (R2 = 249 

0.50) > XGBoost (R2 = 0.48) > ElmanNN (R2 = 0.47) > ELM (R2 = 0.32). The RMSE values of RF-250 

GAM, RF-STK, RF, GRNN, XGBoost, BPNN, ElmanNN, and ELM were 14.41, 17.79, 19.13, 251 

19.41, 20.73, 20.06, 20.61, and 23.36 μg/m3, respectively. MPE showed the similar characteristic 252 

with RMSE in the order of RF-GAM (10.97 μg/m3) < RF-STK (13.48 μg/m3) < RF (14.71 μg/m3) 253 

< GRNN (14.89 μg/m3) < BPNN (15.43 μg/m3) < ElmanNN (15.75 μg/m3) < XGBoost (15.80 μg/m3) 254 

< ELM (18.23 μg/m3). Besides, the slope of the RF-GAM model was closer to 1 compared with 255 

other models. It was well documented that the RF model generally showed the better performance 256 

than other models because this method did not need to define complex relationships between the 257 

explanatory variables and the O3 concentration (e.g., linear or nonlinear). Furthermore, the variable 258 

importance indicators calculated by the RF model can help user to distinguish the key variables 259 

from noise ones and make full use of the strength of each predictor to assure the model robustness. 260 

Although BPNN, GRNN, XGBoost, ElmanNN, and ELM have been widely applied to estimate the 261 

air pollutant concentrations (Chen et al., 2018c; Zang et al., 2018; Zhu et al., 2019), these methods 262 

suffered from some weaknesses in predicting the pollutant level. For instance, both of BPNN and 263 
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ElmanNN models could capture the locally optimal solution when the training subsets were 264 

integrated into the final model, which decreased the predictive performance of the model (Wang et 265 

al., 2015). Moreover, BPNN generally showed slow training speed, especially with the huge training 266 

subsets (Li and Park, 2009; Wang et al., 2015). ELM often consumed more computing resource and 267 

experienced the over-fitting issue due to the increase of sampling size (Huang et al., 2015; Shao et 268 

al., 2015). GRNN method advanced the training speed compared with BPNN model and avoided 269 

the locally optimal solution during the modelling process (Zang et al., 2019), whereas the predictive 270 

performance is still worse than that of RF model. XGBoost was often considered to be robust in 271 

predicting air pollutant level (Li et al., 2020), while the model did not display the excellent 272 

performance in the present study. It might be attributable to that the sampling size in the present 273 

study was not enough because the model generally showed the better performance with big samples. 274 

Moreover, we found that the two-stage model was superior to the one-way model in the predictive 275 

performance. The encouraging result suggested that the relationship between the predictors and the 276 

8-h O3 concentration varied with space and time. The two-stage model used the GAM method to 277 

further adjust the prediction error of the RF model, and considered the spatiotemporal correlation 278 

of predictor error in Tibetan Plateau. Although the STK model incorporated space and time into the 279 

model simultaneously, the RF-GAM model outperformed the RF-STK model. It was assumed that 280 

the STK model showed the higher uncertainty in predicting the O3 concentration in the region with 281 

scarce sampling sites (Gao et al., 2016; Li et al., 2017a). Overall, the ensemble RF-GAM model 282 

showed the significant improvement in predictive performance. 283 

The performances of the RF-GAM model in four seasons were also assessed by 10-fold cross-284 

validation (Tab. 1). The predictive performance of the RF-GAM model showed significantly 285 
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seasonal difference with the highest R2 value observed in summer (0.74), followed by winter (0.69) 286 

and autumn (0.67), and the lowest one in spring (0.64). However, both of RMSE and MPE displayed 287 

different seasonal characteristics with the R2 value. Both of RMSE and MPE for RF-GAM followed 288 

the order of spring (15.32 and 11.94 μg/m3) > summer (15.13 and 11.75 μg/m3) > winter (14.58 and 289 

11.44 μg/m3) > autumn (13.23 and 10.52 μg/m3). The lowest R2 value in spring might be caused by 290 

multiple O3 sources and complicate O3 formation mechanisms. The large estimation errors (e.g., 291 

RMSE and MPE) in spring and summer were attributable to the high 8-h O3 concentration in these 292 

seasons, while the low prediction error observed in autumn was contributed by the low O3 level. 293 

Apart from the seasonal variation, we also investigated the spatial variability of the predictive 294 

accuracy for RF-GAM model. Tibetan Plateau was classified into five provinces and then the 295 

predictive performance of RF-GAM model in each province was calculated. Among the five 296 

provinces, Gansu province displayed the highest R2 value (0.74), followed by Sichuan province 297 

(0.71), Qinghai province (0.70), Tibet autonomous region (0.69), and Yunnan province (0.54) (Tab. 298 

2). The result shown herein was not in agreement with the previous studies by Geng et al. (2018), 299 

who confirmed that the predictive performance of machine learning model was positively associated 300 

with the sampling size. It was assumed that the spatial distribution of the sampling sites in Tibet was 301 

uneven and the sampling density is low, though Tibet possessed the maximum monitoring sites 302 

compared with other provinces. The prediction error (RMSE and MPE) did not exhibit the same 303 

characteristics with the R2 value. The higher RMSE and MPE focused on Tibet autonomous region 304 

(14.81 and 11.24 μg/m3) and Qinghai province (14.83 and 11.33 μg/m3) due to the higher values of 305 

blh and sund. The lowest values of RMSE and MPE could be observed in Yunnan province, which 306 

was contributed by the higher rainfall amount. 307 
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Although 10-fold cross-validation verified that the RF-GAM model showed the better predictive 308 

performance in estimating the surface 8-h O3 concentration, the test method cannot validate the 309 

transferring ability of the final model. The monitoring site in Tibetan Plateau before May, 2014 is 310 

very limited, and only the daily 8-h O3 data in Lhasa from the open website 311 

(https://www.aqistudy.cn/historydata/) was available to compare with the simulated data. As 312 

depicted in Fig. 4, the R2 value of unlearning 8-h O3 level against predicted 8-h O3 concentration 313 

reached 0.67, which was slightly lower than that of the 10-fold cross-validation R2 value. Overall, 314 

the extrapolation ability of the RF-GAM model is satisfactory, and thus it was supposed that the 315 

model could be applied to estimate the O3 concentration in other years. Both of RMSE and MPE 316 

for the unlearning 8-h O3 level against the predicted 8-h O3 concentration were significantly higher 317 

than those of the 10-fold cross-validation. It was supposed that Lhasa showed the higher surface 8-318 

h O3 concentration over Tibetan Plateau. 319 

3.2 Variable importance 320 

   The results of variable importance for key variables are depicted in Fig. 5. In the final RF-GAM 321 

model, it was found that time was the dominant factor for the 8-h O3 concentration in Tibetan Plateau, 322 

indicating that the ambient O3 concentration displayed significantly temporal correlation. Following 323 

the time, meteorological factors served as the main factors for the O3 pollution in the remote region. 324 

The sum of sund, sp, d2m, t2m, and tp occupied 34.43% of the overall variable importance. Among 325 

others, sund was considered to be the most important meteorological factors for the O3 pollution. It 326 

was assumed that strong solar radiation and long duration of sunshine favored the photochemical 327 

generation of ambient O3 (Malik and Tauler, 2015; Stähle et al., 2018). Tan et al. (2018) 328 

demonstrated that the chemical reaction between NOx and VOCs was strongly dependent on the 329 

https://doi.org/10.5194/acp-2019-972
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



16 
 

sunlight. Besides, the atmospheric pressure (sp) was also treated as a major driver for the O3 330 

pollution over Tibetan Plateau. Santurtún et al. (2015) have demonstrated that sp was closely linked 331 

to the atmospheric circulation and synoptic scale meteorological pattern, which could influence the 332 

long-range transport of ambient O3. Apart from sund and sp, d2m and t2m played significant role 333 

on the O3 pollution, which was in consistent with many previous studies (Zhan et al., 2018). Zhan 334 

et al. (2018) observed that cold temperature was not favorable to the O3 formation. d2m can affect 335 

the surface O3 pollution through two aspects. On the one hand, RH affected heterogeneous reactions 336 

of O3 and particles (e.g., soot, mineral) (He et al., 2017; He and Zhang, 2019). On the other hand, 337 

high RH could increase the soil moisture and evaporation, and thus the water-stressed plants tended 338 

to emit more biogenic isoprene, thereby promoting the elevation of O3 concentration (Zhang and 339 

Wang, 2016). It should be noted that the effect of precipitation on O3 pollution was relatively weaker 340 

than those of other meteorological factors. Zhan et al. (2018) also found the similar result and 341 

believed that rain scavenging served as the key pathway for the O3 removal only when O3 pollution 342 

was very serious. The power of O3 column amount on surface O3 concentration seemed to be lower 343 

than those of most meteorological factors, suggesting that vertical transport of ambient O3 was 344 

complex. Although socioeconomic factors and land use types were not dominant factors for the O3 345 

pollution in Tibetan Plateau, they still cannot be ignored in the present study because the predictive 346 

performance would worsen if these variables were excluded from the model. It was widely 347 

acknowledged that the emissions of NOx and VOCs focused on the developed urban areas with high 348 

population density especially in the remote plateau (Zhang et al., 2007; Zheng et al., 2017). 349 

Compared with the urban land, the grassland played more important role on the O3 pollution in 350 

Tibetan Plateau. It was thus supposed that the grassland was widely distributed on Tibetan Plateau, 351 
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which could release a large amount of biogenic volatile organic compounds (BVOCs) (Fang et al., 352 

2015). It was well known that photochemical reaction of BVOCs and NOx in the presence of 353 

sunlight was beneficial to the O3 formation (Calfapietra et al., 2013). Furthermore, Fang et al. (2015) 354 

confirmed that the BVOC emission in Tibetan Plateau displayed a remarkable increase in the wet 355 

seasons. 356 

3.3 The spatial distribution of estimated 8-h O3 concentration over Tibetan Plateau 357 

   Figure 6 depicts the spatial distribution of the 8-h O3 level estimated by the novel RF-GAM 358 

model. The spatial distribution pattern modelled by the RF-GAM model showed the similar 359 

characteristic with the result simulated by previous studies except North Tibetan Plateau (Liu et al., 360 

2018). The estimated 8-h O3 concentration displayed the highest value in some cities of North 361 

Tibetan Plateau such as Huangnan (73.48±4.53 μg/m3) and Hainan (72.24±5.34 μg/m3), followed 362 

by the cities in the central region including Lhasa (65.99±7.24 μg/m3) and Shigatse (65.15±6.14 363 

μg/m3), and the lowest one in some cities of Southeast Tibetan Plateau such as Aba (55.17±12.77 364 

μg/m3). The spatial pattern of 8-h O3 concentration is highly consistent with the result predicted by 365 

Liu et al. (2018) using CMAQ model, while it is not in agreement with the result estimated by Zhan 366 

et al. (2018) using RF-STK model. The difference of the present study and Zhan et al. (2018) focuses 367 

on the North Tibetan Plateau, which lacks of monitoring site and remains the higher uncertainty. 368 

Firstly, it might be contributed by the weakness of RF-STK mentioned above. Moreover, Zhan et al. 369 

(2018) only used the ground-level measured data in 2015 to establish the model and the data in new 370 

sites since 2015 were not incorporated into the model, which could increase the model uncertainty 371 

(Zhan et al., 2018). As shown in Fig. 6, most of the cities in Qinghai province (e.g., Huangnan, 372 

Hainan, and Guoluo) generally showed the higher 8-h O3 concentration over Tibetan Plateau, which 373 
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was in a good agreement with the spatial distribution of O3 column amount (Fig. S2). Besides, some 374 

cities in Tibet such as Shigatse and Lhasa also showed the higher 8-h O3 levels. It was supposed that 375 

the precursor (e.g., NOx and VOCs) emissions in these regions were significantly higher than those 376 

in other cities of Tibetan Plateau (Fig. S3). Zhang et al. (2007) used the satellite data to observe that 377 

the higher VOCs and NOx emission focused on the residential area with high population density in 378 

the remote Tibetan Plateau. Apart from the effect of anthropogenic emission, the meteorological 379 

conditions could be also the important factors for the 8-h O3 concentration. As shown in Fig. S4-380 

S10, the higher blh and sp in the Northeast Tibetan Plateau were beneficial to the O3 formation 381 

through the reaction of VOC and OH radical, leading to the higher 8-h O3 concentration in these 382 

cities (Ou et al., 2015). In addition, the lower tp occurred in North Tibetan Plateau and Northeast 383 

Tibetan Plateau, both of which were unfavorable to the ambient O3 removal (Yoo et al., 2014). In 384 

contrast, the higher tp observed in the Southeast Tibetan Plateau resulted in the slight O3 pollution. 385 

3.4 The temporal variation of the simulated 8-h O3 concentration over Tibetan Plateau 386 

   The annually mean estimated 8-h O3 concentration in Tibetan Plateau displayed the slow 387 

increase from 64.74 ± 8.30 μg/m3 to 66.45 ± 8.67 μg/m3 2005 through 2015, whereas it decreased 388 

from the peak to 65.87 ± 8.52 μg/m3 during 2015-2018 (Fig. 7). Based on the Mann-Kendall method 389 

(Fig. 8a), it was found that the surface O3 concentration exhibited the slight increase as the whole, 390 

while the increase degree was not significant (p > 0.05). Besides, it should be noted that the O3 391 

concentrations in various regions showed different increase speed. As depicted in Fig. 8b, we found 392 

that the 8-h O3 concentrations in North, West, and East Tibetan Plateau displayed significant 393 

increase trend by the speed of 1-3 μg/m3 during 2005-2018. The middle region of Tibetan Plateau 394 

showed the moderate increase trend by the speed of 0-1 μg/m3. However, the 8-h O3 concentration 395 
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in Shigatse and Sannan even displayed the decrease trend 2005 through 2018. 396 

   Besides, the 8-h O3 concentration in Tibetan Plateau displayed significantly seasonal 397 

discrepancy. The estimated 8-h O3 level in Tibetan Plateau followed the order of spring (75.00±8.56 398 

μg/m3) > summer (71.05±11.13 μg/m3) > winter (56.39±7.42 μg/m3) > autumn (56.13±8.27 μg/m3) 399 

(Fig. 9 and Tab. 3). The 8-h O3 concentrations in most of prefecture-level cities showed the similarly 400 

seasonal characteristics with the overall seasonal variation in Tibetan Plateau. Based on the result 401 

summarized in Tab. S1, it was found that the key precursors of ambient O3 (e.g., VOCs, NOx) 402 

generally displayed the higher emissions in winter compared with other seasons. However, the 403 

seasonal distribution of ambient O3 concentration was not in accordance with the precursor 404 

emissions, suggesting that the meteorological factors might play more important roles on ambient 405 

O3 concentration. It was well known that the higher air temperature in spring and summer was 406 

closely related to the low sp and high sund, both of which were beneficial to the O3 formation 407 

(Sitnov et al., 2017). Although summer showed the highest air temperature and the longest sunshine 408 

duration, the higher rainfall amount in summer decreased the ambient O3 concentration via wet 409 

deposition (Li et al., 2017b; Li et al., 2019b). Moreover, the highest blh occurred in spring, which 410 

was favorable to the strong stratosphere-troposphere exchange process in Tibetan Plateau (Skerlak 411 

et al., 2014). Therefore, the 8-h O3 concentration in summer and winter were relatively lower than 412 

that in spring. Nonetheless, the 8-h O3 levels in Diqing, Sannan, and Nyingchi displayed the highest 413 

values in spring (56.38±7.87, 73.90±5.97, and 73.22±2.77 μg/m3), followed by winter (45.88±7.05, 414 

61.71±4.32, and 62.24±3.63 μg/m3) and summer (44.35±5.90, 61.00±5.86, and 59.60±2.33 μg/m3), 415 

and the lowest ones in autumn (37.45±5.76, 54.70±3.13, and 53.84±2.06 μg/m3). The lower O3 level 416 

in summer than winter was mainly attributable to the higher precipitation observed in the summer 417 
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of these cities (Fig. S9). In addition, it should be noted that the NOx and VOCs emissions of South 418 

Tibetan Plateau (e.g., Sannan) exhibited the higher values in winter compared with other seasons.   419 

3.5 The nonattainment days over Tibetan Plateau during 2005-2018 420 

   The annually mean nonattainment days in the 19 prefecture-level cities over Tibetan Plateau are 421 

summarized in Tab. 2. 100 μg/m3 was regarded as the critical value for the 8-h O3 level by World 422 

Health Organization (WHO). The nonattainment days denoted total days with the 8-h O3 423 

concentration higher than 100 μg/m3. Although the annually mean 8-h O3 concentrations in all of 424 

the cities over Tibetan Plateau did not exceed the critical value, not all of the regions experienced 425 

excellent air quality in the long period (2005-2018). Some cities of Qinghai province including 426 

Huangnan, Haidong, and Guoluo suffered from 45, 40, and 40 nonattainment days each year (Fig. 427 

10 and Tab. 4). Besides, some cities in the South Tibetan Plateau such as Shigatse and Sannan also 428 

experienced more than 40 nonattainment days each year, suggesting that Tibetan Plateau was still 429 

faced of the risk for O3 pollution. Fortunately, some remote cities such as Ali, Ngari, and Qamdo 430 

did not experience the excessive O3 pollution all the time, which was ascribed to the low precursor 431 

emissions and appropriate meteorological conditions. It should be noted that the nonattainment days 432 

in the region with high O3 concentration showed the significantly seasonal difference, whereas the 433 

seasonal difference was not remarkable in the city with low O3 pollution. As shown in Tab. 2, it 434 

should be noted that nearly all of the nonattainment days could be detected in spring and summer, 435 

which was in good agreement with the O3 levels in different seasons, indicating that the O3 pollution 436 

issue should be paid more attention in spring and summer. 437 

4. Summary and implication 438 

In the present study, we developed a novel hybrid model (RF-GAM) based on multiple 439 
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explanatory variables to estimate the surface 8-h O3 concentration across the remote Tibetan Plateau. 440 

The 10-fold cross-validation method demonstrated that RF-GAM achieved excellent performance 441 

with the highest R2 value (0.76) and lowest root mean square error (RMSE) (14.41 μg/m3) compared 442 

with other model including RF-STK, RF, BPNN, XGBoost, GRNN, ElmanNN, and ELM models. 443 

Moreover, the unlearning ground-measured O3 data validated that the RF-GAM model showed the 444 

better extrapolation performance (R2=0.67, RMSE=25.68 μg/m3). The result of variable importance 445 

suggested that time, sund, and sp were key factors for the surface 8-h O3 concentration over Tibetan 446 

Plateau. Based on the RF-GAM model, we found that the estimated 8-h O3 concentration exhibited 447 

notably spatial variation with the highest value in some cities of North Tibetan Plateau such as 448 

Huangnan (73.48±4.53 μg/m3) and Hainan (72.24±5.34 μg/m3) and the lowest one in some cities of 449 

Southeast Tibetan Plateau such as Aba (55.17±12.77 μg/m3). Besides, we also found that the O3 450 

level displayed a slow increase from 64.74±8.30 μg/m3 to 66.45±8.67 μg/m3 2005 through 2015, 451 

while the O3 concentration decreased to 65.87±8.52 μg/m3 in 2018. The estimated 8-h O3 level in 452 

Tibetan Plateau showed the significantly seasonal discrepancy with the order of spring (75.00±8.56 453 

μg/m3) > summer (71.05±11.13 μg/m3) > winter (56.39±7.42 μg/m3) > autumn (56.13±8.27 μg/m3). 454 

Based on the critical value set by WHO, most of the cities in Tibetan Plateau shared with the 455 

excellent air quality, while several cities (e.g., Huangnan, Haidong, and Guoluo) still suffered from 456 

more than 40 nonattainment days each year. 457 

The RF-GAM model for O3 estimation has several limitations. First of all, the O3 estimation in 458 

North Tibetan Plateau might show some uncertainties because the ground-level monitoring site is 459 

very scarce, and thus we cannot validate the reliability of predicted value in the region without 460 

monitoring site. Secondly, our approach did not include data on emission inventory, or traffic count 461 
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because the continuous emissions of NOx and VOCs were not open access. At last, we only focused 462 

on the temporal variation of surface O3 concentration in recent ten years, and the short-term O3 data 463 

cannot reflect the response of O3 pollution to climate change. In the future work, we should combine 464 

more explanatory variables such as long-term NOx and VOCs emissions to retrieve the surface O3 465 

level over Tibetan Plateau in the past decades. 466 
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Figure and table captions 

Fig. 1 The geographical locations and annually mean 8-h O3 concentrations in the ground-observed 

sites (red dots) over Tibetan Plateau during 2014-2018. The elevation data are collected from 

geographical and spatial data cloud at a 30-m spatial resolution. 

Fig. 2 The workflow for predicting the spatiotemporal distributions of 8-h O3 levels. 

Fig. 3 Density scatterplots of model fitting and cross-validation result at a daily level. (a), (b), (c), 

(d), (e), (f), (g), and (h) represent RF-GAM, RF-STK, RF, GRNN, XGBoost, BPNN, ElmanNN, 

and ELM models, respectively. The red dotted line denotes the fitting linear regression line. The full 

names of MPE and RMSE are mean prediction error (μg/m3) and root mean squared prediction error 

(μg/m3), respectively.  

Fig. 4 The transferring ability validation of RF-GAM method based on the measured daily 8-h O3 

concentration during December 2013-May 2014. 

Fig. 5 The variable importance of predictors in the final RF-GAM model.  

Fig. 6 The mean value of estimated 8-h O3 concentration during 2005-2018 over Tibetan Plateau. 

Fig. 7 The inter-annual variation of predicted 8-h O3 level (μg/m3) from 2005 to 2018 across Tibetan 

Plateau. 

Fig. 8 The trend analysis of predicted 8-h O3 concentration. (a) and (b) represent the result of Mann-

Kendall method and discrepancy of estimated O3 level during 2005-2018 across Tibetan Plateau. 

Fig. 9 The seasonal variability of estimated 8-h O3 level across Tibetan Plateau. (a), (b), (c), and (d) 

represent the predicted 8-h O3 concentrations in spring, summer, autumn, and winter, respectively. 

Fig. 10 The spatial distributions of nonattainment days in Tibetan Plateau during 2005-2018. 

Tab. 1 The R2 values, RMSE, and MPE of RF-GAM in four seasons over Tibetan Plateau. 
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Tab. 2 The R2 values, RMSE, and MPE of RF-GAM in different provinces over Tibetan Plateau. 

Tab. 3 The estimated 8-h O3 concentration in 19 prefecture-level cities over Tibetan Plateau during 

four seasons including spring, summer, autumn, and winter. 

Tab. 4 The mean nonattainment days (8-h O3 level >100 μg/m3) in 19 prefecture-level cities over 

Tibetan Plateau each year.
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Fig. 1  
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 

https://doi.org/10.5194/acp-2019-972
Preprint. Discussion started: 14 January 2020
c© Author(s) 2020. CC BY 4.0 License.



43 
 

Fig. 10 
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Tab. 1  

 Spring Summer Autumn Winter 

R2 0.64 0.74 0.67 0.69 

RMSE 15.32 15.13 13.23 14.58 

MPE 11.94 11.75 10.52 11.44 
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Tab. 2  

 Tibet Qinghai Gansu Sichuan Yunnan 

R2 0.69 0.70 0.74 0.71 0.54 

RMSE 14.81 14.83 13.65 13.23 12.49 

MPE 11.24 11.33 10.88 10.08 10.20 
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Tab. 3  

 Province Spring Summer Autumn Winter Annual 

Aba Sichuan 65.61±14.30 59.46±14.32 45.55±12.03 47.95±10.55 55.17±12.77 

Ngari Tibet 71.34±3.12 70.10±3.57 53.14±3.67 51.84±3.69 62.21±3.34 

Qamdo Tibet 72.52±4.29 62.74±5.79 52.06±4.01 55.42±3.09 61.10±3.93 

Diqing Yunnan 56.38±7.87 44.35±5.90 37.45±5.76 45.88±7.05 46.22±6.51 

Gannan Gansu 76.77±9.73 73.27±10.67 54.74±8.33 54.72±6.95 65.60±8.91 

Ganzi Sichuan 69.38±10.99 61.45±11.58 48.49±8.79 50.94±6.62 58.06±9.48 

Guoluo Qinghai 80.12±5.12 76.13±5.83 58.86±5.71 57.38±4.66 68.77±5.25 

Haibei Qinghai 78.18±10.21 78.84±10.31 60.90±9.69 57.48±9.78 69.47±9.99 

Haidong Qinghai 74.20±10.34 73.70±9.12 53.61±8.11 51.02±9.60 63.84±9.21 

Hainan Qinghai 83.01±5.36 82.27±5.72 61.57±5.39 58.96±5.44 72.24±5.34 

Haixi Qinghai 79.39±6.88 79.48±7.79 60.78±7.48 57.71±6.99 69.99±7.24 

Huangnan Qinghai 85.21±4.98 83.01±4.66 61.95±4.18 60.62±4.49 73.48±4.53 

Lhasa Tibet 80.08±9.63 70.13±8.42 55.86±5.78 55.85±5.19 65.99±7.24 

Nagqu Tibet 74.59±5.13 70.46±6.69 54.60±5.16 53.53±4.83 63.83±5.23 

Shigatse Tibet 77.31±8.62 69.66±7.69 55.93±4.58 55.57±4.72 65.15±6.14 

Sannan Tibet 73.90±5.97 61.00±5.86 54.70±3.13 61.71±4.32 63.04±4.00 

Xining Qinghai 77.43±10.27 77.84±9.44 58.19±9.29 54.72±10.04 67.77±9.70 

Yushu Qinghai 77.35±5.55 73.34±6.37 56.12±5.53 55.02±5.01 66.05±5.50 

Nyingchi Tibet 73.22±2.77 59.60±2.33 53.84±2.06 62.24±3.63 62.40±2.20 
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Tab. 4  

 Spring Summer Autumn Winter Annual 

Aba 0 0 0 0 0 

Ngari 0 0 0 0 0 

Qamdo 0 0 0 0 0 

Diqing 0 0 0 0 0 

Gannan 0 1 0 0 1 

Ganzi 13 2 0 0 15 

Guoluo 19 21 0 0 40 

Haibei 0 0 0 0 0 

Haidong 22 18 0 0 40 

Hainan 14 12 1 0 27 

Haixi 1 1 0 0 2 

Huangnan 23 22 0 0 45 

Lhasa 12 7 0 0 19 

Nagqu 24 14 0 0 38 

Shigatse 28 13 0 0 41 

Sannan 33 7 0 0 40 

Xining 2 1 0 0 3 

Yushu 0 0 0 0 0 

Nyingchi 0 0 0 0 0 
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